Oracle Estimation of a Change Point in High-Dimensional Quantile Regression
نویسندگان
چکیده
منابع مشابه
Change-Point Estimation in High Dimensional Regression Models
We consider high dimensional nonhomogeneous linear regression models with p n 9 0 or p >> n, where p is the number of features and n is the number of observations. In the model considered, the underlying true regression coefficients undergo multiple changes. Our goal is to estimate the number and locations of these change-points and estimate sparse coefficients in each of the intervals between ...
متن کاملHigh-Dimensional Structured Quantile Regression
Quantile regression aims at modeling the conditional median and quantiles of a response variable given certain predictor variables. In this work we consider the problem of linear quantile regression in high dimensions where the number of predictor variables is much higher than the number of samples available for parameter estimation. We assume the true parameter to have some structure character...
متن کاملSemiparametric Quantile Regression with High-dimensional Covariates.
This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mil...
متن کاملSequential change point detection in linear quantile regression models
We develop a method for sequential detection of structural changes in linear quantile regression models. We establish the asymptotic properties of the proposed test statistic, and demonstrate the advantages of the proposed method over existing tests through simulation. © 2015 Elsevier B.V. All rights reserved.
متن کاملChange point estimation in high dimensional Markov random-field models.
This paper investigates a change-point estimation problem in the context of high-dimensional Markov random field models. Change-points represent a key feature in many dynamically evolving network structures. The change-point estimate is obtained by maximizing a profile penalized pseudo-likelihood function under a sparsity assumption. We also derive a tight bound for the estimate, up to a logari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2018
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2017.1319840